An existence theorem of foliations with singularities $\text{A}_{k}$, $\text{D}_{k}$ and $\text{E}_{k}$
نویسندگان
چکیده
منابع مشابه
An asymptotic existence theorem for plane curves with prescribed singularities
Let d,m1, . . . ,mr be (r + 1) positive integers. Denote by V (d;m1, . . . ,mr) the variety of irreducible (complex) plane curves of degree d having exactly r ordinary singularities of multiplicities m1, . . . ,mr. In most cases, it is still an open problem to know whether this variety is empty or not. In this paper, we will concentrate on the case where the r singularities can be taken in a ge...
متن کاملOn smooth foliations with Morse singularities
Let M be a smooth manifold and let F be a codimension one, C foliation on M , with isolated singularities of Morse type. The study and classification of pairs (M,F) is a challenging (and difficult) problem. In this setting, a classical result due to Reeb [Reeb] states that a manifold admitting a foliation with exactly two centertype singularities is a sphere. In particular this is true if the f...
متن کاملAn Equilibrium Existence Theorem
Bewley 14, Theorem l] proved an infinite dimensional equilibrium existence theorem which is a significant extension of the classical finite dimensional theorem of Arrow and Debreu [ 11. The assumptions on technology and preferences are natural and applicable in a wide variety of cases. The proof is based on a limit argument that makes direct use of the existence of equilibrium in the finite dim...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولGallot-Meyer Theorem for foliations
We study transverse conformal Killing forms on foliations and prove a Gallot-Meyer theorem for foliations. Moreover, we show that on a foliation with C-positive normal curvature, if there is a closed basic 1-form φ such that ∆Bφ = qCφ, then the foliation is transversally isometric to the quotient of a q-sphere.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hokkaido Mathematical Journal
سال: 1991
ISSN: 0385-4035
DOI: 10.14492/hokmj/1381413990